Transcranial alternating current stimulation affects motion adaptation in V1 and MT neurons in awake, behaving macaques

Kohitij Kar, Jacob Duijnhouwer, and Bart Krekelberg
Center for Molecular and Behavioral Neuroscience, Rutgers University

Introduction

Previous Observation:
- tACS reduces motion aftereffect (MAE) in human subjects.

Current Hypothesis:
- Subthreshold rhythmic membrane voltage modulations produced by tACS reduce adaptation in motion selective neurons.

Current Approach:
- To explicitly test this hypothesis, we recorded from neurons in area MT (n=69; 55+14) and V1 (n = 66; 35+31) in awake, behaving macaques while applying tACS.

Electrophysiology Design

Effect on MT cells

- Tuning Amplitude (TA)
 - tACS reduces adaptation induced by adaptation

- Tuning Width (TW)
 - tACS reduces sharpening induced by adaptation
 - tACS reduces broadening induced by adaptation

Evoked LFPs in MT

- Tuning Amplitude
 - tACS reduces facilitation induced by adaptation
 - tACS reduces suppression induced by adaptation

- Tuning Width
 - tACS reduces broadening induced by adaptation

Effect on V1 cells

- Tuning Amplitude
 - TA changes in V1 are similar to MT.

- Tuning Width
 - TW changes in V1 are similar to MT.

References

Take-Home Messages

- tACS mitigates the effects of motion adaptation measured behaviorally.
- Macaque Electrophysiology: tACS mitigates changes in tuning amplitude and width in motion adapted MT and V1 neurons.

Acknowledgements

Research reported in this poster was supported by Eye Institute of the National Institutes of Health, USA under award number R01EY017605 and the Charles and Johanna Busch Foundation

Contact: kohitij@vision.rutgers.edu